Electoral Systems in the Digital Age: Underlying Challenges and New Opportunities. Part III. Methods of Multi-Criteria Approaches to Electoral Technologies

Keywords: public choice, positive voting, classical election technologies, coherence of voters’ opinions, non-numerical statistics, ordinal scales, scale arithmetic, profile consistency, Kendall coefficient, linear convolution, criterion weights, nonlinear scaling, consistency indices, verbal-quantitative scales, qualimetry, pairwise comparisons, Kemeni median, Schulze heuristics, fuzzy sets, Monte Carlo method, voting profiles, transitivity, data consistency, p-value

Abstract

The article is devoted to the problem of democratic development of Ukraine.

The reasons for the need for a radical transformation of the electoral process in Ukraine have been considered from a theoretical standpoint. The main goal and sub-goals of the research have been formulated. The classical mathematical models of electoral technologies, selected for comparison with modern approaches have been described.

The basic principles of selection of methods for measuring the results of approval voting have been analyzed. The issues of constructing a verbal-numerical scale, assessing the consistency of voter decisions and applying statistical criteria to obtain a consolidated result have been considered.

The models selected for calculating the final election rating are analyzed. Mathematical algorithms of multicriteria selection based on the qualimetric approach and pairwise comparison on four variants of scales are given. Protocols for determining consensus alternatives using the Topsis method, the Kemeni  Young median, the Schulze heuristic procedure, and the fuzzy set approach are described.

The results of approbation of the selected protocols of approval of the voting system for the election model of 4 candidates on 7 questions of the ballot paper are given. The algorithm and the results of generating by the Monte Carlo method arrays of initial data with a size of 10,000 records, having a uniform and normal distribution with three variants of the bias parameter, are presented. To identify the sensitivity of the studied protocols to violations of the transitivity of individual preference profiles, the primary data arrays were transformed by replacing the nontransitive profiles with an equivalent number of transitive ones without presenting a preference to any alternative. Based on the assessment of the correlation of the final ratings, their sensitivity to the type of distribution and to violations of the transitivity of individual judgments, it was concluded that it is advisable to use the Kemeny median to determine the voting results. The use of the proposed method for transforming primary data also makes it possible to use the Condorcet, Dodgson, Saati and Schulze protocols. The results of this study indicate that there is a fundamental possibility of transition to a new digital paradigm of the electoral process based on the approving principle of voting.

Downloads

Download data is not yet available.

References

1. 1. Mueller D. (2007). Obshchestvennyy vybor III [Public Choice III]. Trans. from English. Moscow: National Research University Higher School of Economics, Institute “Economic School” [in Russian].
2. Khamkhanova D. N. (2006). Teoreticheskie osnovyi obespecheniya edinstva ekspertnyih izmereniy [Theoretical foundations of the integrity of expert measurements]. Ulan-Ude: East Siberian University of Technologies and Management [in Russian].
3. Yaremchuk N. A., & Hoda O. Yu. (2015). Metod otsiniuvannia kompleksnoho pokaznyka yakosti za verbalnymy odynychnymy pokaznykamy yakosti z urakhuvanniam vahovykh koefitsiientiv [A method for assessment of a complex quality indicator by verbal single quality indicators based on weight coefficients]. Informatsiini systemy, mekhanika ta keruvannia – Information Systems, Mechanics and Control, 12, 5–11 [in Ukrainian].
4. Yager R. R. (1988). On ordered weighted averaging aggregation in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics, 18, 183–190.
5. Shylin A. I., & Koptelova I.A. (2012). Teoriya prinyatiya resheniy v proektirovanii informatsionno-izmeritelnoy tehniki [The decision-making theory in designing information and measurement devices]. Volgograd: Volga State University [in Russian].
6. Fishburn P. C. (1978). Teoriya poleznosti dlya prinyatiya resheniy [Utility Theory for Decision Making]. Trans. from English. Moscow: Nauka [in Russian].
7. Postnikov V. M., & Spiridonov S. B. (2015). Vyibor vesovyih koeffitsientov lokalnyih kriteriev na osnove arifmeticheskoy progressii [Choosing weight coefficients of local criteria on the basis of arithmetic progression]. Nauka i obrazovaniye – Science and Education, 9, 237–249 [in Russian].
8. Postnikov V. M., & Spiridonov S. B. (2015). Metodyi vyibora vesovyih koeffitsientov lokalnyih kriteriev [Methods of choosing weight coefficients of local criteria]. Nauka i obrazovaniye – Science and Education, 6, 267–287 [in Russian].
9. Nekrestianova U. N. (2015). Printsip naimenshego deystviya kak instrument vyichisleniya optimalnyih znacheniy vesovyih koeffitsientov [The principle of least action as a tool for calculating optimal values of weight]. Mezhdunarodnyiy nauchnyiy institut EDUCATIO” – International Scientific Institute “EDUCATIO”, 4(11), part 1, 70–73 [in Russian].
10. (1972). Statisticheskoe izmerenie kachestvennyih harakteristik [Guidelines for measuring statistical quality]. Trans. from English. Moscow: Statistika [in Russian.
11. Saaty T. L. (2009). Prinyatie resheniy pri zavisimostyah i obratnyih svyazyah: Analiticheskie seti [Decision Making with Dependence and Feedback: The Analytical Network Process]. Trans. from English. 2nd ed. Moscow: Book house “LIBROKOM” [in Russian].
12. Belton V., & Gear T. (1983). On a Shortcoming of Saaty’s Method of Analytical Hierarchies. Omega, vol. 11, issue 3, 228–230.
13. Kushurbaeva V. T., Sushkov Yu. A., & Tamazyan H. S. (2011). Shkalyi i sposobyi polucheniya otnositelnyih prioritetov v metode analiza ierarhiy [Scales and ways for deriving relative priorities in the method of analysis of hierarchies]. Vestnik SPbGU. Seriya “Matematika, mekhanika, astronomiya” – Bulletin of Saint-Petersburg State University. Series “Mathematics, Mechanics, Astronomy”, 4, 52–60 [in Russian].
14. Khudoley D. M. (2017). Paradoksyi Kondorse i ih reshenie [The Condorcet Paradoxes and Their Solution]. Vestnik Permskogo universiteta. Yuridicheskiey nauki – Bulletin of Perm University. Legal Sciences, 37, 288–302 [in Russian].
15. Voloshyn O. F., & Mashchenko S. F. (2010). Modeli ta metody pryinyattia rishen [Models and methods of decision-making]. 2nd ed., revised and suppl. Kyiv: Printing and publishing center “Kyivskyi universytet” [in Ukrainian].
16. Totsenko V. H. (2002). Metody ta systemy pidtrymky pryinyattia rishen. Alhorytmichnyi aspect [Methods and systems for decision-making support]. Kyiv: Naukova dumka [in Ukrainian].
17. Chernorutskiy I. H. (2005). Metodyi prinyatiya resheniy [Methods of decision-making]. Saint-Petersburg: BKHV-Petersburg [in Russian].
18. Zgurovskiy M. Z., Pavlov A. A., & Shtankevich A. S. (2010). Modifitsirovannyiy metod analiza ierarhiy. Systemni doslidzhennia ta informatsiini tekhnolohii – System Studies and Information Technologies, 1, 7–25 [in Russian].
19. Pankratova N. D., & Nedashkivska N. I. (2010). Modeli i metody analizu iierarkhii: Teoria. Zastosuvannia [Models and methods for analysis of hierarchies: Theory. Applications]. Kyiv: Information and computing center “Politekhnika” [in Ukrainian].
20. Pavlov O. A., Lishchuk K. I. et al. (2010). Modyfikovanyi metod analizu iierarkhii (versiia 1,2) [A modified method for analysis of hierarchy (version 1,2)]. Visnyk NTUU “KPI”. Informatyka, upravlinnia ta obchysliuvalna tekhnika – Bulleting of National Technical University of Ukraine “Kyiv Polytechnic Institute”. Informatics, Management and Computing Devices, 50, 43–54 [in Ukrainian].
21. Mironova N. A. (2011). Integratsiya modifikatsiy metoda analiza ierarhii dlya sistem podderzhki prinyatiya gruppovyih resheniy [Integration modifications of the analytical hierarchy process for group decision making support systems]. Radioelektronika, informatyka, upravlinnya – Radio Electronics, Computer Science, Control, 2, 47–54 [in Russian].
22. Fedulov Ya. A. (2015). Metodyi i programmnyie sredstva podderzhki vyibora resheniy na osnove pryamogo i obratnogo nechetkogo otsenivaniya [Methods and software tools to support the choice of decisions on the basis of direct and reverse fussy evaluation]. Smolensk. Retrieved from https://www.dissercat.com/content/metody-i-programmnye-sredstva-podderzhki-vybora-reshenii-na-osnove-pryamogo-i-obratnogo-nech [in Russian].
23. Kadenko S. V., & Tsyhanok V. V. (2017). Vyznachennia vidnosnoi kompetentnosti ekspertiv pid chas ahrehatsii parnykh porivnian [Determining the relative competency of experts in time of aggregating paired comparisons]. Reiestratsiia, zberihannia i obrobka danykh – Registration, Storage and Processing of Data, vol. 19, issue 2, 69–83 [ in Ukrainian].
24. Nedashkivska N. I. (2018). Metodolohiia ta instrumentarii pidtrymky pryiniattia rishen na osnovi iie-rarkhichnykh ta merezhevykh modelei [Methodology and tools for decision-making support on the basis of hierarchical and network models]. Doctor thesis. Retrieved from https://scholar.google.com.ua/citations?User=s625ZEAAAAAJ& hl = ru [in Russian].
25. Hwang C. L., & Yoon K. (1981). Multiple Attribute Decision Making – Methods and Applications. A State of Art Surwey, Berlin, Heidelberg, NY: Springer Ver-lag.
26. Chang D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res., 95, issue 3, 649–655.
27. Pankratova N. D., & Nedashkovskaya N. I. (2014). Gibridnyiy metod mnogokriterialnogo otsenivaniya alternativ prinyatiya resheniy [The hybrid method for multi-criterial assessment of decision-making alternatives]. Kibernetika i sistemnyi analiz – Cybernetics and System Analysis, vol. 50, issue 5, 58–70 [in Russian].
28. Sinttskyi M. Ye. (2016). Khmarni tekhnolohii u finansovo-statystychnykh rozrakhunkakh [Cloud technologies in financial-statistical computations]. Kyiv: Information and Analytical Agency [in Ukrainian].
29. Kemeni J., Snell J. (1972). Kiberneticheskoe modelirovanie. Nekotoryie prilozheniya [Cybernetic Modelling. Some Applications]. Trans. from English. Moscow: Sovetskoye radio [in Russian].
30. Schulze method (Wiki). URL: https://uk.wikipedia.org/w/index.php? title = Metod_Shulʹtse & oldid = 25981562 [in Ukrainian].
31. Schwarz set (Wiki). URL: https://en.wikipedia.org/wiki/Schwartz_set
32. Tushavin V. A. Mediana Kemeni [Kemeni Median]. Retrieved from https://github.com/Tushavin/ RANKING / blob / master / article.md [in Russian].
34. Tushavin V. A. (2015). Ranzhirovanie pokazateley kachestva s ispolzovaniem metodov Kemeni – Yanga i Shultse [Ranking of quality indicators by methods of Schulze and Kemeni – Yang]. Ekonomika i menedzhment sistem upravleniya – Economics and Management of Control Systems, 4.4(18), 497–503.
35. Poleshchuk O. M. (2003). Postroenie integralnyih modeley v ramkah nechetkoy ekspertnoy informatsii [Constructing integral models with fussy expert information]. Lesnoy vestnik – Forestry bulletin, 5, 155–159 [in Russian].
36. Poleshchuk O. M. (2002). Metody predstavleniya ekspertnoy informatsii v vide sovokupnosti term-mnozhestv polnykh ortogonalnykh semanticheskikh prostranstv [Methods for expert data presentation in form of term-sets of the full orthogonal semantic spaces]. Lesnoy vestnik – Forestry bulletin, 5, 198–216 [in Russian]
37. Piegat A. (2015). Nechetkoe modelirovanie i upravlenie [Fuzzy Modelling and Control]. Trans. from English. 3rd ed. Moscow: BINOM. Laboratory of knowledge [in Russian].
38. Poleshchuk O. M. (2003). Metodyi predvaritelnoy obrabotki nechetkoy ekspertnoy informatsii na etape ee formalizatsii [Methods of preliminary processing of fuzzy expert information at the phase of its formalization]. Lesnoy vestnik – Forestry bulletin, 5, 160–167 [in Russian].
39. Poleshchuk O. M., & Poleshchuk I. A. (2003). Nechetkaya klasterizatsiya elementov mnozhestva polnyih ortogonalnyih semanticheskih prostranstv [Fussy clustering of the elements in a set of full orthogonal semantic spaces]. Lesnoy vestnik – Forestry bulletin, 1, 117–127 [in Russian].

Abstract views: 24
PDF Downloads: 18
Published
2021-12-21
How to Cite
SINYTSKYI, M. (2021). Electoral Systems in the Digital Age: Underlying Challenges and New Opportunities. Part III. Methods of Multi-Criteria Approaches to Electoral Technologies. Scientific Bulletin of the National Academy of Statistics, Accounting and Audit, (3-4), 109-124. Retrieved from https://nasoa-journal.com.ua/index.php/journal/article/view/255