A Study of Modern Trends in Database and Data Repository Technologies as the Technological and Architectural Basis for the Creation of Software and Intelligent Systems by Means of Modern Programming Languages. Part 1

Keywords: databases, database management system, data warehouses, decision support systems, analytical data processing, structural query languange, data mining, transactional queries, analytic queries


The article contains an analytical review of developments in database technologies, made on the basis of reports prepared by the results of eight meetings of database specialists held throughout 1988–2013. Objects of the analysis are most interesting predictions given in the reports: their realism, accuracy, pragmatism or, vice versa, utopianism or opportunism.   

The article consists of two parts.

Part 1 is devoted to analysis and evaluation of predictions made in the reports of the four earlier meetings held in 1988, 1990, 1995, and 1996. These predictions are about creation, development and uses of decision support systems, database appliances, graphic processing units, operating systems, interface for structured query language, database applications, information distribution, universal database management systems, query optimization criteria, intellectual analysis of database within database management systems. A detailed description of research themes in the field of databases, which got the priority status in that time, is given: recording and computation of data, security and confidentiality of data, replication and harmonization of data, structuring of data, intellectual analysis of data, data warehouses.   

Part 2 is devoted to an analytical review of the predictions contained in the reports on the meetings held in 1998, 2003, 2008, and 2013. The predictions are about self-adjustment of database systems, rethinking of the traditional database architecture as a result of new hardware capabilities. They make special emphasis on the feasibility of manipulations with structured and unstructured data within DSS architecture, support of Big Data technology, with outlining the themes of research aimed at implementation of its potential.     


Download data is not yet available.


1. Bernstein P. A., Dayal U., DeWitt D. J. et al. (1989). Future Directions in DBMS Research. ACM SIGMOD Record, vol. 18, issue 1, 17–26.
2. Silberschatz A., Stonebraker M., & Ullman J. D. (1991). Database Systems: Achievements and Opportunities. Communications of the ACM, vol. 34, issue 10, 110–120.
3. Silberschatz A., Stonebraker M., & Ullman J. D. (1996). Database Research: Achievements and Opportunities into the 21st Century. SIGMOD Record, vol. 25, issue 1, 52–63.
4. Silberschatz A., Zdonik S. et al. (1996). Strategic Directions in Database Systems – Breaking Out of the Box. ACM Computing Surveys, vol. 28, issue 4, 764–778.
5. Bernstein P. A., Brodie M. L., Ceri S. et. al. (1998). The Asilomar Report on Database Research. SIGMOD Record, vol. 27, issue 4, 74–80.
6. Abiteboul S., Agrawal R., Bernstein P. A., et al. (2005). The Lowell Database Research Self-Assessment. Communications of the ACM, vol. 48, issue 5, 111–118.
7. Agrawal R., Ailamaki A., Bernstein P. A. et. al. (2009). The Claremont Report on Database Research. Communications of the ACM, vol. 52, issue 6, 56–65.
8. Abadi D., Agrawal R., Ailamaki A. et al. (2014). The Beckman Report on Database Research. ACM SIGMOD Record, vol. 43, issue 3, 61–70.
9. Keen P. G. W., & Morton M. S. S. (1978). Decision support systems: an organizational perspective. Reading, Mass., Addison-Wesley Pub. Co.
10. Kuznetsov S. D. (2010). MapReduce: vnutri, snaruzhi ili sboku ot parallelnyih SUBD? [MapReduce: within, outside, or on the side-by-side with parallel DBMSs?]. Trudy ISP RAN – Proceedings of the Institute for System Programing of the RAS, 19, 35–40 [in Russian].
11. Feigenbaum E. A., & McCorduck P. (1984). The fifth generation: Japan’s computer challenge to the world. Creative Computing Magazine, vol. 10, issue 8, 103–111.
12. DeWitt D., & Gray J. (1992). Parallel database systems: the future of high performance database systems. Communications of the ACM, vol. 35, issue 6, 85–98.
13. Winslett M. (2003). Jim Gray speaks out. ACM SIGMOD Record, vol. 32, issue 1, 53–61.
14. Gartner IT Glossary. Database Appliances. Retrieved from https://www.gartner.com/en/information-technology/glossary/database-appliances
15. Exadata. Retrieved from https://ru.wikipedia.org/wiki/Exadata
16. Stonebraker M. (2010). My Top 10 Assertions About Data Warehouses. BLOG@CACM, August 26.
17. Prikazchikov S. O., & Kostenetskiy P. S. (2015). Primenenie graficheskih uskoriteley dlya obrabotki zaprosov nad szhatyimi dannyimi v parallelnyih sistemah baz dannyih [Applications of graphic accelerators for processing of queries over compressed data in parallel database systems] Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Vyichislitelnaya matematika i informatika – Bulletin of the South Ural State University. Series “Computational Mathematics and Software Engineering”, vol. 4, issue 1, 64–70 [in Russian].
18. Rozier M., Abrossimov V., Armand F., Boule I., Gien M., Guillemont M., et al. (1988). CHORUS Distributed Operating Systems. Computing Systems, vol. 1, issue 4, 305–370.
19. Burdonov I., Ivannikov V., Kopytov G., Kosachev A., & Kuznetsov S. (1991). The CLOS project: Towards an object-oriented environment for application development. Next Generation Information System Technology. Lecture Notes in Computer Science (LNCS), 504, 422–427. https://doi.org/10.1007/3-540-54141-1_23
20. Golub D. B., Julin D. P., Rashid R. F., Draves R. P., Dean R. W., Forin A., et al. (1992). Microkernel operating system architecture and mach. Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel Architectures, 11–30.
21. QNX Neutrino Real-time Operating System (RTOS). Proven reliability, performance, security. Retrieved from https://blackberry.qnx.com/en/software-solutions/ embedded-software/qnx-neutrino-rtos
22. Tanenbaum A., Appuswamy R., Bos H., Cavallaro L., Giuffrida C., Hrubý T., et al. (2010). MINIX 3: Status Report and Current Research. Login, vol. 35, issue 3, 7–13.
23. Kuznetsov S. D. (1996). Standartyi yazyika relyatsionnyih baz dannyih SQL: kratkiy obzor [Language standards for SQL relational databases: a short review]. Otkryityie sistemyi. SUBD – Open Systems. Database Management Systems, 2, 6–36 [in Russian]. Retrieved from http://citforum.ru/database/articles/art_2.shtml
24. McJones P. R. (Ed.) (1997). The 1995 SQL Reunion: People, Projects, and Politics. August 20 (2nd edition). Retrieved from https://www.mcjones.org/ System_R/SQL_Reunion_95/SRC-1997-018.pdf
25. Frana P. L. Oral history interview with Donald D. Chamberlin. Charles Babbage Institute, 2001. Retrieved from https://conservancy.umn.edu/ handle/11299/107215
26. Atkinson M., Bancilhon F., DeWitt D., Dittrich K., Maier D., & Zdonik S. (1989). The Object-Oriented Database System Manifesto. Proceedings of 1st International Conference on Deductive and Object-Oriented Databases. New York, N.Y.: Elsevier Science, 223–240.
27. Stonebraker M., Rowe L., Lindsay B., Gray J., Carey M., Brodie M., et al. (1990). Third-Generation Data Base System Manifesto. ACM SIGMOD Record, vol. 19, issue 3, 31–44.
28. Stonebraker M. (2016). The Land Sharks Are on the Squawk Box. Communications of the ACM, vol. 59, issue 2, 74–83.
29. Kuznetsov S. D. (2007). Obiektno-relyatsionnyie bazyi dannyih: proshedshiy etap ili nedootsenennyie vozmozhnosti [Object-relational databases: the past stage or unappreciated opportunities?]. Trudy ISP RAN – Proceedings of the Institute for System Programing of the RAS, vol. 13, issue 2, 115–140 [in Russian].
30. Grinev M. N., & Kuznetsov S. D. (2002). UQL: A UML-based Query Language for Integrated Data. Programming and Computer Software, vol. 28, issue 4, 189–196. https://doi.org/10.1023/A:1016366916304
31. Stonebraker M., Abadi D. J., Batkin A., Chen X., Cherniack M., Ferreira M., et al. (2005). C-Store: A Column-Oriented DBMS. Proceedings of VLDB, 553–564.
32. Stonebraker M., Madden S., Abadi D. J., Harizopoulos S., Hachem N., & Helland P. (2007). The End of an Architectural Era (It’s Time for a Complete Rewrite). Proceedings of VLDB, 1150–1160.
33. Vertica Accelerator. The Fastest Analytics and Machine Learning – from Start to Finish. Retrieved from https://www.vertica.com/
34. VoltDB. Retrieved from https://www.voltdb.com/
35. Kuznetsov S. D., & Poskonin А. V. (2014). Sistemyi upravleniya dannyimi kategorii NoSQL [NoSQL Data Management Systems] // Programmirovanie – Programming and Computer Software, vol. 40, issue 6, 34–47 [in Russian].
36. Newman D. Data as a Service: The Big Opportunity for Business. Retrieved from https://www.forbes.com/sites/danielnewman/2017/02/07/data-as-a-service-the-big-opportunity-for-business/?sh=7a98e3a724d9
37. Kuznetsov S. D. (2012). Kogda, kak i zachem stoit primenyat teoremu CAP? [When, how and why CAP theorem should be applied?] Otkryityie sistemyi. SUBD – Open Systems. Database Management Systems, 4, 56–59 [in Russian].
38. Gray J., Chaudhuri S., Bosworth A., Layman A., Reichart D., Venkatrao M., et al. (1997). Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery, vol. 1, issue 1, 29–53.
39. Nolan C. (1999). Manipulate and Query OLAP Data Using ADOMD and Multidimensional Expressions. Microsoft Systems Journal, vol. 14, issue 8, 97–106.
40. Oracle Database, Data Warehousing Guide, 10g Release 2 (10.2), 2005.
41. Bernstein P. A. & Umeshwar D. (1994). An Overview of Repository Technology. VLDB '94, Proceedings of the 20th International Conference on Very Large Data Bases, 705–713.
42. Gosling J., Joy B. & Steele G. (1996). The Java Language Specification. Addison Wesley.
43. Sun Microsystems. JavaBeans API specification, version 1.01, August 1997.
44. Hamilton G. & Cattell R. (1997). JDBC: A Java SQL API, Version 1.20. Sun Microsystems Inc.
45. Chaudhuri S. & Weikum G. (2000). Rethinking Database System Architecture: Towards a Self-Tuning RISC-Style Database System. VLDB '00, Proceedings of the 26th International Conference on Very Large Data Bases, 1–10.
46. Stonebraker M. & Çetintemel U. (2005). “One Size Fits All”: An Idea Whose Time Has Come and Gone. ICDE '05, Proceedings of the 21st International Conference on Data Engineering, 2–11.
47. Database SQL Tuning Guide. Chapter 4, Query Optimizer Concepts.
48. Imielinski T. & Mannila H. (1996). A database perspective on knowledge discovery. Communications of the ACM, vol. 39, issue 11, 58–64.

Abstract views: 28
PDF Downloads: 22
How to Cite
YERSHOVA, O., & STAVYTSKYIО. (2021). A Study of Modern Trends in Database and Data Repository Technologies as the Technological and Architectural Basis for the Creation of Software and Intelligent Systems by Means of Modern Programming Languages. Part 1. Scientific Bulletin of the National Academy of Statistics, Accounting and Audit, (3-4), 94-108. Retrieved from https://nasoa-journal.com.ua/index.php/journal/article/view/254